
CSE Ph.D. Qualifying Exam, Spring 2025: Data
Analysis

Instructions:

• This is a CLOSED BOOK exam. No books or notes are allowed.

• Please answer three of the following four questions. All questions are graded on a scale
of 10. If you answer all four, all answers will be graded and the three lowest scores will
be used in computing your total.

• Please write clearly and concisely, explain your reasoning, and show all work. Points
will be awarded for clarity as well as correctness.

• Good luck!
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1. Q1: Neural Networks Consider a variational autoencoder (VAE) with the following
setup:

The approximate posterior qϕ(z|x) is modeled as a Gaussian distribution:

qϕ(z|x) = N
(
z;µϕ(x), σ

2
ϕ(x)

)
, (1)

where µϕ(x) and σ2
ϕ(x) are parameterized by the encoder neural network. The evidence

lower bound (ELBO) objective is

L (θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]−KL (qϕ(z|x)∥p(z)) . (2)

(1) [1 points] Explain why the sampling process z ∼ qϕ(z|x) poses a challenge for
backpropagation. Use mathematical expressions to support your explanations.

(2) [1 points] Describe how the reparameterization trick is used to address this chal-
lenge and explain why it is important to isolate the randomness during the repa-
rameterization. Use mathematical expressions to support your explanations.

(3) [2 points] Suggest a workaround if the reparameterization trick were not used.

(4) [3 points] Given a weights matrix W , an input vector x, the sigmoid activation
function σ(z) = 1/ (1 + exp (−z)), we can construct a simple neural network
f(x;W ) = σ(W ⊺x). Let the scalar model output be ŷ. Write down an expression
for ∇W ŷ.

(5) [3 points] Given the following values of W and x, calculate the network estimate
ŷ by doing the forward computation once. Let the ground-truth label y be 0 and
the loss function be L(ŷ, y) = 1

2
(ŷ − y)2, update the weights matrix once using

the gradient descent rule: W (t+1) = W (t) − η∇WL, where η = 4 is the learning
rate.

2. Q2: Multiclass Classification. We consider the multiclass classification with soft-
max logistic regression. Specifically, we consider the k-class softmax parametrized
conditional model

p(Ck = 1|x) = exp(ϕk(x))∑k
j=1 exp(ϕj(x))

, (3)

where ϕi(x) can be a linear model, i.e., ϕi(x) = w⊤
i x, or a 2-layer perception neural

network, i.e., ϕi(x) = w⊤
i σ(W

⊤x) with σ(·) is a differentiable nonlinear activation
function (also known as “neuron”), e.g., relu(·) = max(0, ·) or tanh(·). Given dataset
{xi, yi}ni=1 with xi ∈ Rd, yi = [yji ]

k
j=1 as a k-dim binary vector, and yji ∈ {0, 1} as a

binary variable, for all i = 1, . . . , n.

(1) [4 points] Denote the parameters in ϕ· as V (V = {wi}ki=1 in linear model and V =
[{wi}ki=1,W ] in 2-layer perception neural network), please provide the maximum
likelihood (MLE) of (3), ℓ(V ), upon the given data.
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(2) [3 points] Could you please calculate the gradient of MLE w.r.t. wi in linear
model?

(3) [3 points] Could you please calculate the gradient of MLE w.r.t. W in 2-layer
perception neural network? (hint: use chain-rule for backpropagation.)

3. Q3: Given a dataset {(xi, yi)}i=1,2,··· ,n where xi ∈ Rd and yi ∈ {−1, 1} for all
i ∈ {1, 2, · · · , n}, please answer the following questions about support vector machine
(SVM).

The primal problem of SVM is derived from a margin-based minimization problem:

min
w,b

1

2
|w|2 + C

n∑
i=1

ξi (4)

s.t. yi(w⊤xi + b) ≥ 1− ξi ∀i (5)

ξi ≥ 0 (6)

The dual problem is given by:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjy
iyj(xi⊤xj) (7)

s.t. C ≥ αi ≥ 0 ∀i (8)
n∑

i=1

αiy
i = 0 (9)

(1) [3 points] Let us modify the penalty in the primal objective from ξi to |ξi|2. The
primal problem becomes:

min
w,b

1

2
|w|2 + 1

2
C

n∑
i=1

|ξi|2 (10)

s.t. yi(w⊤xi + b) = 1− ξi ∀i (11)

This is known as least-squares support vector machines. Please show how
to derive the solution to the least squares support vector machines.

(2) [2 points] Please show how to make inference based on your solution in Q3-1.
Please compare this with the inference of SVM.

(3) [2 points] What is the computation cost of solving the least-squares support vector
machine? Please compare this with the computation cost of SVM.

(4) [3 points] Please show how to apply the kernel trick to the least squares SVM.
Assume you have access to a given kernelK(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, but you solution
should only include the kernel function K but not the function mapping ϕ. Please
also show how to make inference of kernel least-squares SVM.

3



4. Q4: Expectation-Maximization.

Derive the EM algorithm for a Gaussian Mixture Model (GMM). Assume you are given
a dataset X = {x1, x2, . . . , xn}, where each xi is independently drawn from one of K
Gaussian distributions. Each distribution k is characterized by parameters including
a mean µk, covariance Σk, and a mixing coefficient πk.

The complete data likelihood for the GMM includes the observed data X and latent
variables Z, where latent variable zik = 1 if xi is generated by the k-th Gaussain and
0 otherwise.

[1] (2 points) Derive the likelihood of the observed data X along with the complete
likelihood of the data involving the latent variables Z

L(θ;X,Z) = (12)

An expectation-maximization algorithm includes E-step: compute the expected value
of the complete data log-likelihood; and M-step: update the parameters.

[2] (2 points) Describe the E-step computation for updating the expected values of the
latent variables Z, and derive the responsibilities γ(zik), that indicates the probability
that xi belongs to the k-th Gaussian.

γ(zik) = (13)

[3] (3 points) Describe the parameter updates in the M-step based on the responsibilities
γ(zik) calculated in the E-step.

π
(new)
k = (14)

µ
(new)
k = (15)

Σ
(new)
k = (16)

[4] (3 points) Discuss how to determine the convergence of the EM algorithm in prac-
tice. Does it guarantee to obtain global minima? How to make a good choice of
initialization?
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