CSE Ph.D. Qualifying Exam, Spring 2025: Data
Analysis

Instructions:

e This is a CLOSED BOOK exam. No books or notes are allowed.

e Please answer three of the following four questions. All questions are graded on a scale
of 10. If you answer all four, all answers will be graded and the three lowest scores will
be used in computing your total.

e Please write clearly and concisely, explain your reasoning, and show all work. Points
will be awarded for clarity as well as correctness.

e Good luck!



1. Q1: Neural Networks Consider a variational autoencoder (VAE) with the following
setup:

The approximate posterior g4(z|x) is modeled as a Gaussian distribution:

6o (2lx) = N (2 no(x), 05(x)) | (1)

where ji4(x) and o3 (z) are parameterized by the encoder neural network. The evidence
lower bound (ELBO) objective is

L(0,¢; ) = By, 1) log po(x]2)] — KL (g4(2|2)|[p(2)) - (2)

(1) [1 points| Explain why the sampling process z ~ g4(z|x) poses a challenge for
backpropagation. Use mathematical expressions to support your explanations.

(2) [1 points] Describe how the reparameterization trick is used to address this chal-
lenge and explain why it is important to isolate the randomness during the repa-
rameterization. Use mathematical expressions to support your explanations.

(3) [2 points] Suggest a workaround if the reparameterization trick were not used.

(4) [3 points] Given a weights matrix W, an input vector &, the sigmoid activation

function o(z) = 1/(1+exp(—=z)), we can construct a simple neural network
flx; W) = o(WTx). Let the scalar model output be §. Write down an expression
for Vwy.

(5) [3 points| Given the following values of W and x, calculate the network estimate
y by doing the forward computation once. Let the ground-truth label y be 0 and
the loss function be £(7,y) = 3(§ — y)?, update the weights matrix once using
the gradient descent rule: W) = W® — nVy, £, where 1 = 4 is the learning
rate.

2. Q2: Multiclass Classification. We consider the multiclass classification with soft-
max logistic regression. Specifically, we consider the k-class softmax parametrized
conditional model

eXP(¢k(93))

_exp(¢(x)’

T

p(Cr = 1]z) = (3)
where ¢;(x) can be a linear model, i.e. gbz( ) = w, z, or a 2-layer perception neural
network, i.e., ¢;(z) = wo(W'x) Wlth o(-) is a dlfferentlable nonlinear activation
function (also known as “neuron”), e.g., relu(-) = max(0,-) or tanh(-). Given dataset
{2y} with ; € R y; = [yf]é?:l as a k-dim binary vector, and y/ € {0,1} as a
binary variable, for all i =1,... n.

(1) [4 points] Denote the parameters in ¢+ as V (V' = {w;}¥_; in linear model and V' =
[{w; }¥_,, W] in 2-layer perception neural network), please provide the maximum
likelihood (MLE) of (3), ¢(V'), upon the given data.



(2) [3 points] Could you please calculate the gradient of MLE w.r.t. w; in linear
model?

(3) [3 points] Could you please calculate the gradient of MLE w.r.t. W in 2-layer
perception neural network? (hint: use chain-rule for backpropagation.)

3. Q3:  Given a dataset {(z%,y%)}iz12..n» Where ' € R? and y' € {—1,1} for all

i€{1,2,--- n}, please answer the following questions about support vector machine

(SVM).

The primal problem of SVM is derived from a margin-based minimization problem:
min 1|w|2+Cifi (4)
w,b 2 3
st. yw'zi+b)>1-¢ Vi (5)

§&>0 (6)

The dual problem is given by:

n 1 n C T
max E a—; E a0y y (28 2?) (7)
i=1 ij=1

st. C>a; >0 Vi (8)
Z ay' =0 (9)
=1

(1) [3 points] Let us modify the penalty in the primal objective from & to [£%|?. The
primal problem becomes:

N IR PAD e e
min S w| +§C;|€! (10)
st y(w 'z’ +b)=1-¢ Vi (11)

This is known as least-squares support vector machines. Please show how
to derive the solution to the least squares support vector machines.

(2) [2 points] Please show how to make inference based on your solution in Q3-1.
Please compare this with the inference of SVM.

(3) [2 points] What is the computation cost of solving the least-squares support vector
machine? Please compare this with the computation cost of SVM.

(4) [3 points] Please show how to apply the kernel trick to the least squares SVM.
Assume you have access to a given kernel K (z, 2") = (¢(x), ¢(z')), but you solution
should only include the kernel function K but not the function mapping ¢. Please
also show how to make inference of kernel least-squares SVM.
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4. Q4: Expectation-Maximization.

Derive the EM algorithm for a Gaussian Mixture Model (GMM). Assume you are given
a dataset X = {x1,xs,...,z,}, where each x; is independently drawn from one of K
Gaussian distributions. Each distribution k is characterized by parameters including
a mean (i, covariance >, and a mixing coefficient 7.

The complete data likelihood for the GMM includes the observed data X and latent
variables Z, where latent variable z;, = 1 if x; is generated by the k-th Gaussain and
0 otherwise.

[1] (2 points) Derive the likelihood of the observed data X along with the complete
likelihood of the data involving the latent variables Z

L(0;X,Z) = (12)
An expectation-maximization algorithm includes E-step: compute the expected value
of the complete data log-likelihood; and M-step: update the parameters.

2] (2 points) Describe the E-step computation for updating the expected values of the
latent variables Z, and derive the responsibilities v(z;), that indicates the probability
that x; belongs to the k-th Gaussian.

V(zik) = (13)

3] (3 points) Describe the parameter updates in the M-step based on the responsibilities
v(zix) calculated in the E-step.

7_‘_’(Cnew) _ (14)
](Cnew) _ (15)
E](ﬂnevv) _ (16)

[4] (3 points) Discuss how to determine the convergence of the EM algorithm in prac-
tice. Does it guarantee to obtain global minima? How to make a good choice of
initialization?



