
CSE Ph.D. Qualifying Exam, Spring 2024
This is a closed-book, closed-notes exam.

Data Analysis

Please answer three of the following four questions. All questions are graded on a scale of
10. If you answer all four, all answers will be graded and the three lowest scores will be used
in computing your total. Show all your work and write in a readable way.

1. Probabilistic PCA
The formulation of PCA was based on a linear projection of the data onto a subspace
of lower dimensionality than the original data space. It can be shown that PCA can
also be expressed as the maximum likelihood solution of a probabilistic latent variable
model. This reformulation of PCA, known as probabilistic PCA (PPCA). PPCA
is a simple example of the linear-Gaussian framework, in which all of the marginal and
conditional distributions are Gaussian. We can formulate PPCA by first introducing an
explicit latent variable z ∈ RM×1 corresponding to the principal-component subspace.
Next we define a Gaussian prior distribution p(z) over the latent variable, together
with a Gaussian conditional distribution p(x|z) for the observed variable x ∈ RD×1

conditioned on the value of the latent variable. Specifically, the prior distribution over
z is given by a zero-mean unit-covariance Gaussian p(z) = N (z|0, I). Similarly, the
conditional distribution of the observed variable x, conditioned on the value of the
latent variable z, is again Gaussian, of the form p(x|z) = N (x|Wz + µ, σ2I) in which
the mean of x is a general linear function of z governed by the D ×M matrix W and
the D-dimensional vector µ. All µ, W and σ2 are unknown parameters.

a. [1.5 points] Derive the marginal distribution p(x) with µ, W and σ2.
b. [1.5 points] Suppose we replace the zero-mean, unit-covariance latent space distribu-
tion p(z) in the PPCA model by a general Gaussian distribution of the formN (z|m,Σ).
By redefining the parameters of the model, show that this leads to an identical model
for the marginal distribution p(x) over the observed variables for any valid choice of m
and Σ.
c. [1.5 points] Note that p(x|z) factorizes with respect to the elements of x, in other
words, this is an example of the naive Bayes model. Draw a directed probabilistic
graph for the PPCA model and naive Bayes to show why.
d. [5.5 points] Maximum likelihood PCA: We next consider the determination of the
model parameters using maximum likelihood. Given a data set X = {xn}Nn=1 of ob-
served data points, where xn ∈ RD×1,

• d.1 [1 points] The corresponding log likelihood function is given by

lnp(X|µ,W, σ2) =

• d.2 [1 points] Setting the derivative of the log likelihood with respect to µ equal
to zero gives the expected result

µ =
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• d.3 [1.5 points] Back-substituting the optimal µ to the log likelihood function, we
can then write the log likelihood function in the form

lnp(X|W, σ2) =

• d.4 [2 points] Derive the closed-form W from the above log likelihood function as
a function of σ2 and data X,

W =

2. Maximum Likelihood and Maximum A Posteriori Estimations

Assume you are helping GaTech to develop an on-campus test for COVID-19. Your
test has a false positive rate of α and a false negative rate of β.

(a) [1 pt] Assume that COVID-19 is evenly distributed through the population and
that the prevalence of the disease is γ. What is the accuracy of your test on the
general population?

(b) [1 pt] Assume there are n people on campus all of whom they know have COVID.
What is the likelihood that the test makes n+ correct predictions?

(c) [4 pts] Derive the maximum likelihood estimate for β. You may assume all other
parameters are fixed.

(d) [4 pts] Derive the Maximum A Posteriori (MAP) estimate for β assuming it has
a prior P (β) = Beta(a, b). You may assume all other parameters are fixed. Hint:
the probability density function of Beta(a, b) is p(x; a, b) = Z ·xa−1(1−x)β−1 with
Z as a constant.

3. Neural Networks

a. [1 point] A perceptron is an algorithm for learning a binary classifier that can be
described by the following learning rule:

y =

{
0 if w · x+ b ≤ 0

1 otherwise
(1)

where w are the weights, x is the input vector and b is the bias. Explain why a
single perceptron can compute the logical AND and OR functions easily, but it cannot
compute the logical XOR.

b. [3 points] Design a feed-forward neural network to solve the XOR problem. The
network should have a single hidden layer of two neurons and an output layer of a
single neuron. Use the ReLU activation function: ReLU(x) = max(0, x). Show your
calculations for every possible input.

c. [3 points] The following figure shows the computational graph of a simple neural
network, ŷ = f(x,W ) = ∥W · x∥2, where x ∈ Rn is the input vector, W ∈ Rn×n is
the weights matrix of the network and f(a) = ∥a∥2. Note that xi refers to the i-th
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element of the vector x and Wij refers to the element at the i-th row and j-th column
of the matrix W .

W

x

· f ŷ

Let q = W · x, show the following

∂f

∂qi
= 2qi;

∂f

∂Wij

= 2qixj;
∂f

∂xi

=
∑
k

2qkWk,i,

and give their vectorized forms respectively.

d. [2 points] Given the following values of W and x, calculate the network estimate
ŷ by doing the forward computation once. Let the ground-truth label y be 0 and the
loss function be L(ŷ, y) = |ŷ − y|, update the weights matrix once using the gradient
descent rule: W (t+1) = W (t) − η∇WL, where η = 1 is the learning rate.

e. [1 point] When training a neural network, why do we want to exclude regularization
from the bias terms?

4. Generative Models

Consider Alice and Bob are asked to fit a generative model pθ(x) over a given dataset
D = {xi}ni=1, where θ denotes the parameters of the model.

(1) Alice exploited the latent variable model for pθ(x) :=
∫
pα(x|z)pβ(z)dz with θ =

{α, β}.
i) [3 points] Please derive the evidence lower bound (ELBO) for the latent vari-

able model, i.e.,

log pθ(x) ≥ Ez∼q(z|x) [log pα(x|z)]−KL(q(z|x)||pβ(z)). (2)

(2) Bob used the energy-based model (EBM) for pθ(x)x := 1
Zθ

exp
(
fθ(x)

)
with Zθ :=∫

exp
(
fθ(x)

)
dx.

i) [3 points] Please derive the gradient of the MLE of EBM, i.e.,

∇θÊx∼D [log pθ(x)] = Êx∼D [∇θfθ(x)]− Ex∼pθ(x) [∇θfθ(x)] . (3)

ii) [4 points] The Ex∼pθ(x) [∇θfθ(x)] is intractable, which makes the gradient (3)
difficult to calculate, and thus, the learning of EBM. If x ∈ Rd is continuous,
please design an approximation for Ex∼pθ(x) [∇θfθ(x)] in (3).
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