
CSE Ph.D. Qualifying Exam, Spring 2023

Data Analysis

Please answer three of the following four questions. All questions are graded on a scale of
10. If you answer all four, all answers will be graded and the three lowest scores will be used
in computing your total. Show all your work and write in a readable way.

1. Logistic Regression with Sparse Features

In many real-world scenarios our data has millions of dimensions, but a given example
has only hundreds of non-zero features. For example, in document analysis with word
counts for features, our dictionary may have millions of words, but a given document
has only hundreds of unique words. In this question we will make l2 regularized SGD
efficient when our input data is sparse. Recall that in l2 regularized logistic regression,
we want to maximize the following objective (in this problem we have excluded w0 for
simplicity):

F (w) =
1

N

N∑
j=1

l
(
x(j), y(j),w

)
− λ

2

d∑
i=1

w2
i

where l
(
x(j), y(j),w

)
is the logistic objective function

l
(
x(j), y(j),w

)
= y(j)

(
d∑
i=1

wix
(j)
i

)
− ln

(
1 + exp

(
d∑
i=1

wix
(j)
i

))
and the remaining sum is our regularization penalty. When we do stochastic gradient
descent on point
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, we are approximating the objective function as
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Definition of sparsity: Assume that our input data has d features, i.e. x(j) ∈ Rd.
In this problem, we will consider the scenario where x(j) is sparse. Formally, let s
be average number of nonzero elements in each example. We say the data is sparse
when s << d. In the following questions, your answer should take the sparsity of
x(j) into consideration when possible. Note: When we use a sparse data structure, we
can iterate over the non-zero elements in O(s) time, whereas a dense data structure
requires O(d) time.
a. [1 point] Let us first consider the case when λ = 0. Write down the SGD update
rule for wi when λ = 0, using step size η, given the example

(
x(j), y(j)

)
.

b. [2 points] If we use a dense data structure, what is the average time complexity to
update wi when λ = 0 ? What if we use a sparse data structure? Justify your answer
in one or two sentences.

1



c. [1 point] Now let us consider the general case when λ > 0. Write down the SGD
update rule for wi when λ > 0, using step size η, given the example

(
x(j), y(j)

)
.

d. [1 point] If we use a dense data structure, what is the average time complexity to
update wi when λ > 0 ?
e. [2 points] Let w

(t)
i be the weight vector after t-th update. Now imagine that we

perform k SGD updates on w using examples
(
x(t+1), y(t+1)

)
, · · · ,

(
x(t+k), y(t+k)

)
, where

x
(j)
i = 0 for every example in the sequence. (i.e. the i-th feature is zero for all of the

examples in the sequence). Express the new weight, w
(t+k)
i in terms of w

(t)
i , k, η, and

λ.
f. [3 points] Using your answer in the previous part, come up with an efficient algorithm
for regularized SGD when we use a sparse data structure. What is the average time
complexity per example?

2. Mixture Discriminant We consider a multi-class classification problem where we
predict one out of K classes based on d real-valued features. We use the probabilistic
model given by

P (X|Y = k) =

Rk∑
r=1

πkrφ (X;µkr,C) (1)

Here, the function φ(x;µ,C) denotes a Gaussian density with mean µ and covariance
matrix C, evaluated in x. Thus, the class conditional for each class k is given by a
Gaussian mixture with Rk mixture components, weights given by πk:, means given by
µk:, and covariance matrix C.

a. [2 pts] Use Bayes rule to derive the class-posterior probabilities as

P (Y = k|X = x) =

Rk∑
r=1

πkrφ (X;µkr,C) Πk

K∑
l=1

Rl∑
r=1

πlrφ(X;µlr,C)Πl

, (2)

with the {πk}1≤k≤K denoting the prior on the relative abundance of the different classes.

b. [2 pts] Formulate an expectation-maximization algorithm for computing the maxi-
mum likelihood estimator of (1), given training data X, Y ∈ RN×d × {1, . . . K}N .

c. [2 pts] Consider instead the following model, prescribed through it’s joint distribu-
tion

P (X, Y ) =
R∑
r=1

πrPr(Y )φ(X;µr,C). (3)

Derive the posterior class distribution as

P (Y = k|X = x) =

R∑
r=1

πrPr (Y = k)φ (x;µr,C)

R∑
r=1

πrPr (Y = k)

(4)
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d. [2 pts] Derive the class conditional P (X|Y ) for (3) and show that the associated
model is a generalization of (1).

e. [2 pts] Derive the EM algorithm for (3).

3. Support Vector Machine

The soft margin SVM is formulated as

min
w∈Rn,b∈R,s∈Rm

1

2
w>w + C1>s

s.t. X>w + by + s− 1 ≥ 0,

s ≥ 0.

(1) Let {xi, yi}mi=1 with xi ∈ Rn and yi ∈ {±1}, i ∈ [1 : m], be a training dataset. For
a fixed value of C, let the corresponding SVM classifier have parameters w∗, b∗.

(a) Let h ∈ Rn and Q ∈ On (Q is an n× n matrix), and form the second training set:
{Q(xi−h), yi}mi=1. Show that the SVM classifier for this second dataset using the same
value of C has parameters Qw∗, w∗>h+ b∗.

(b) If we first center the training examples, how does this change the SVM classifier?

(2) Suppose that instead of using C
∑m

i=1 si as the penalty term in the objective of the
primal SVM problem we use the quadratic penalty 1

2
C
∑m

i=1 s
2
i , while maintaining the

constraint si ≥ 0.
(a) Formulate the new primal problem in vector form. When is the primal problem
feasible?
(b) Does strong duality hold for this problem? Justify your answer.
(c) Write down the KKT conditions.
(d) Find the dual problem.

4. KL divergence

In many machine learning problems, we often need to measure the “distance” between
two probability distributions, such as in the E-step of EM algorithms and variational
inference. The Kullback-Leibler (KL) divergence is such a statistical distance, and it
measures how one probability distribution differs from another. In this problem, we
consider discrete probability distributions, i.e.

P =

{
(p1, . . . , pn)|

n∑
i

pi = 1, pi ≥ 0

}
.

Now for two probability distributions p, q ∈ P , their KL divergence is defined as

KL(p‖q) = −
n∑
i=1

pi log
qi
pi
.
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(1) [2pts] Prove that KL divergence is non-negative, i.e., KL(p‖q) ≥ 0, andKL(p‖q) =
0 if and only if p = q.

(2) [1pt] Is KL divergence symmetric or asymmetric (i.e., is it true that KL(p‖q) =
KL(q‖p))? Justify your answer.

(3) [3pts] Consider two random variables X and Y that follow probability distri-
butions pX and pY , respectively, and joint distribution pXY . If X and Y are
independent, we have pX,Y = pXpY . If not, we may be interested in quantify-
ing the degree of their independence. One way to measure this is to consider
KL(pX,Y ‖pXpY ), which is also known as the mutual information between X and
Y , denoted as I(X, Y ). Prove that

I(X, Y ) = H(X)−H(X|Y ),

where H(X) := −
∑

x pX(x) log pX(x) is the entropy of X, measuring the un-
certainty of X, and H(X|Y ) := −

∑
x,y pX,Y (x, y) log pX|Y (x|y) is the conditional

entropy of X given Y .

(4) [4pts] Now let us consider a toy machine learning task in generative modeling,
where we have a dataset that follows a bimodal distribution p(X), as illustrated
in Figure 1. Our goal is to approximate the real distribution p(X) with a model
distribution qθ(X). For simplicity, we restrict the qθ(X) to normal distributions,
i.e., qθ(X) = N (µ, σ2). Since we want to approximate p(X) using qθ(X), a natural
objective function is to minimize the KL divergence between these two probability
distributions. Here, we have two options for the objective, i.e., minθKL(p‖qθ) or
minθKL(qθ‖p). For each of the two choices, draw the density curve of qθ that
could be obtained by minimizing the corresponding KL divergence, and explain
your answers.

Figure 1: Probability density of p(X).
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