
CSE Ph.D. Qualifying Exam, Fall 2024
This is a CLOSED BOOK exam. No books or notes are allowed.

Data Analysis

Please answer three of the following four questions. All questions are graded on a scale of
10. If you answer all four, all answers will be graded and the three lowest scores will be used
in computing your total. Show all your work and write in a readable way.

1. Q1: Locally Weighted Linear Regression

Given {(x(i), y(i)), . . . , (x(m), y(m))} and corresponding positive weights w(1), . . . , w(m),
we consider the Locally Weighted Linear Regression problem where we minimize the
following loss function:

J(θ) =
1

2

m∑
i=1

w(i)
(
y(i) − θTx(i)

)2
. (1)

(1) [2 pts] When w(i) = 1,∀i, Eq. 1 to the regular linear regression with the loss

function: J(θ) = 1
2

∑m
i=1

(
y(i) − θTx(i)

)2
, which can be expressed in vector form

as J(θ) = ∥Xθ− y∥22 where the transpose of each x(i) is a row in matrix X. Now
generalize this vector form to Eq. 1 and show that J(θ) can also be written as

J(θ) = (Xθ − y)TW (Xθ − y),

for an appropriate diagonal matrix W , and clearly state what W is.

(2) [2 pts] A common choice for w(i) is

w(i) = exp

(
−(x(i) − x)2

2τ 2

)
,

where τ is a bandwidth hyperparameter. Briefly describe how this loss function
differs from regular linear regression and how the loss of individual data point is
influenced by the weights.

(3) [3 pts] Based on your understanding of overfitting and underfitting, explain how
you would expect the training error and the validation error to vary when τ is
very large and very small, respectively.

(4) [3 pts] Suppose we have a training set of m independent examples {(x(i), y(i))}mi=1,
but with differing variances in the y(i) observations, characterized by the proba-
bility distribution:

p
(
y(i) | x(i); θ

)
=

1√
2πσ(i)

exp

(
−(y(i) − θTx(i))2

2(σ(i))2

)
.

Prove that finding the maximum likelihood estimate of θ of this problem reduces
to solving the locally weighted linear regression in Eq. 1. Also clearly state what
the w(i) are in terms of the σ(i)’s.
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2. Q2: Neural Networks

(1) [2 pts] Given a weight matrix W , an input vector x, the hyperbolic tangent
activation function tanh(z) = (ez − e−z) / (ez + e−z), we can construct a simple
neural network f(x;W ) = tanh (W ⊺x). Let the model output be ŷ. Write down
an expression for ∇W ŷ.

(2) [3 pts] Given the following values of W and x, calculate the network estimate ŷ
by doing the forward computation once. Let the ground-truth label y be 0 and
the loss function be L(ŷ, y) = |ŷ − y|, update the weights matrix once using the
gradient descent rule: W (t+1) = W (t) − η∇WL, where η = 4 is the learning rate.

W =

[
1
3

]
, x =

[
0.5
−0.5

]
Calculate ŷ with the updated W and compare it to the previous estimate.

(3) [1 pts] L1 regularization on a neural network model’s parameters w is defined
as ∥w∥1 =

∑
i |wi|. Suppose the objective function is L (w;X,y). First, write

down the L1 regularized objective function L̂ with a coefficient parameter α.
Then, using an element-wise sign function sign(·), write down the corresponding
gradient of the regularized objective function L̂.

(4) [3 pts] To observe the effect of L1 regularization on the weights of the model, we
can approximate the unregularized objective function by Taylor expansion and
discarding high-order terms:

L̃ := L(w∗) +
1

2
(w −w∗)⊺ H (w −w∗) ,

where w∗ is the optimal set of weights without the regularization term and H is
the Hessian matrix. We assume that H is diagonal and its diagonal terms Hi,i

are positive.

Write down an analytical form for each weight term wi in w when the gradient is
zero. Note that the gradient of |x| at x = 0 can take any value between [−1, 1].
Hint: there are three different conditions based on the values of w∗

i .

(5) [1 pts] Given your answer to the previous question, explain how L1 regularization
will affect large and small weights.

3. Q3: Reinforcement Learning
Alice is asked to conduct reinforcement learning from human feedback (RLHF) on large
language models(LLMs), which is denoted as πref (y|x) with x as the prompt and y as
the responded text. Please help Alice to complete the task.

(1) [4 points] The first step of RLHF is to learn a reward model. However, there is no
directly reward labeled, but only pairwise comparison provided by human, i.e.,
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given two answers y1 and y2 to the same prompt x, a human labeler will distinguish
which one is better and which is worse, denoted as y+ and y−, respectively. Alice
exploits the Bradley-Terry (BT) model to capture the pairwise comparison with
an implicit reward rθ(x, y), where θ denote the parameters of the model, i.e.,

P(y+ ≻ y−|x, y+, y−) =
exp(rθ(x, y+))

exp(rθ(x, y+)) + exp(rθ(x, y−))
(2)

With such data collected D = {(y+, y−, x)ni=1}, please help Alice to design the
MLE of the BT model to learn θ.

(2) [4 points] With the learned reward model, Alice would like to update the LLM
πω(y|x) through policy optimization, where ω is the parameter, i.e.,

max
πω

ℓ(ω) = Ex∼D
[
Ey∼πω(y|x) [rθ(x, y)]−KL(πω||πref )

]
. (3)

Please help Alice to derive the policy gradient w.r.t. ω, i.e., ∇ωℓ(ω).

(3) [2 points] Alice was told she needs to repeat the step 1 and 2 iteratively. Could
you please explain the reason to Alice?

4. Q4: Linear Regression with Laplacian Noise

You must have seen how least-squares regression is motivated by maximum likelihood
estimation if we think our data obeys a linear relationship but has added noise that
is normally distributed. However what if the noise is better modeled by the Laplace
distribution?

Let ϵ ∼ Laplace(µ, β) indicate a random variable ϵ drawn from a univariate Laplace
distribution with mean µ and scale parameter β. The PDF of this distribution is

f(ϵ;µ, β) =
1

2β
exp

(
−|ϵ− µ|

β

)
.

Following the usual notation, the input is an n × d data matrix X and a vector y
such that yi is the label for sample point Xi, where X⊤

i is the ith row of X. To keep
things simple, we will do linear regression through the origin (no bias term α), so the
regression function is h(x) = w ·x. Our model is that each label yi comes from a linear
relationship perturbed by Laplacian noise,

yi ∼ Laplace(w ·Xi, β),

where w ∈ Rd is the true linear relationship. We will use maximum likelihood estima-
tion to try to estimate w.

(a) (2 pts) Write the likelihood function L(w;X, y) for the parameter w, given the
fixed data X and y.
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(b) (1 pt) Write the log likelihood function ℓ(w;X, y) for the parameter w, given the
fixed data X and y, in as simple a form as you can. (Make sure your logarithms
have the correct base.)

(c) (2 pts) What is the simplest cost function we can minimize that gives us the same
value of w as maximizing the likelihood?

(d) (2 pts) How is the cost function you just derived different from standard least-
squares regression? Is it more or less sensitive to outliers? Why?

(e) (3 pts) Write the batch gradient descent rule for minimizing your cost function,
using η for the step size (aka learning rate). You may omit training points whose
losses have undefined gradients. Hint: Recall that d

dα
|α| is 1 for α > 0, -1 for

α < 0, and undefined for α = 0.
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