
CSE Ph.D. Qualifying Exam, Fall 2024
Algorithms

Instructions:

Please answer three of the following four questions. All questions are graded on a scale of 10. If you
answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
This exam is closed-book, closed-notes.

Questions:

1. Greedy

Consider a sequence of events that occur over time. Purchases at stock exchanges – what’s being
bought – are one source of data with a natural ordering in time. Given a long sequence S of such
events, we want an efficient way to detect certain patterns in them. For example, we may want to
know if the four events

buy Google, buy Amazon, buy Google, buy Nvidia

occur in the sequence S, in order but not necessarily consecutively (i.e. there may be other events in
between).

Begin with a collection of possible events (e.g., the possible transactions) and a sequence S of n of
these events. A given event may occur multiple times in S (e.g., Google stock may be bought many
times in a single sequence S). We will say that a sequence S′ is a subsequence of S if there is a way
to delete certain of the events from S so that the remaining events, in order, are equal to the sequence
S′. So, for example, the sequence of four events above is a subsequence of the sequence

buy Apple, buy Google, buy Amazon, buy Google, buy Tesla, buy Nvidia

Our goal is to be able to take short sequences and detect whether they are subsequences of S. Provide
a greedy algorithm that takes two sequences of events – S′ of length m and S of length n, each possibly
containing an event more than once – and decides whether S′ is a subsequence of S. What is the
running time of your algorithm? Prove its optimality. (Hint: show that your greedy algorithm is
always ahead).

2. Divide and Conquer, Dynamic Programming: Maximum Subarray

Given a one-dimensional array of integers of length n, the maximum subarray problem is the task of
finding the largest possible sum of a contiguous subarray.

For example, suppose that we have an an array A = [−1, 1,−3, 4,−1, 2, 1,−5, 4]. The contiguous
subarray with the largest sum is [4,−1, 2, 1] with sum 6.

(a) Give a dynamic programming algorithm for the maximum subarray problem. Please define the
subproblem and provide the recurrence relations. Additionally, give its asymptotic time and space
complexity in theta notation. Pseudocode is not required.
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Figure 1: Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with length
approximately 24.89. This tour is not bitonic. (b) The shortest bitonic tour for the same set of points. Its
length is approximately 25.58.

(b) Give a divide-and-conquer algorithm for the maximum subarray problem that runs in O(n log n)
time. Provide pseudocode to illustrate your algorithm. Analyze its time complexity.

3. Dynamic Programming: Euclidean Traveling Salesman

In the euclidean traveling-salesperson problem, you are given a set of n points in the plane, and your
goal is to find the shortest closed tour that connects all n points.

The general problem is NP-hard, and its solution is therefore believed to require more than polynomial
time.

J. L. Bentley has suggested simplifying the problem by considering only bitonic tours, that is, tours
that start at the leftmost point, go strictly rightward to the rightmost point, and then go strictly
leftward back to the starting point. Figure 1(b) shows the shortest bitonic tour of the same points. In
this case, a polynomial-time algorithm is possible.

Please provide a dynamic programming algorithm that runs in O(n2)-time for determining an optimal
bitonic tour. Define the subproblem and provide the recurrence relations. Provide pseudocode of
your implementation and analyze the time complexity. You may assume that no two points have the
same x-coordinate and that all operations on real numbers take unit time. (Hint: Scan left to right,
maintaining optimal possibilities for the two parts of the tour.)

4. NP-complete: Vertex Cycle Cover

Given a directed graph G = {V,E}, a VertexCycleCover problem is: does there exist a subset of
vertices S, where S ⊆ V and |S| ≤ k, such that every simple cycle in G passes through at least one
vertex in S?

Prove that the VertexCycleCover problem is NP-complete using that the VertexCover problem
is NP-complete. Remember to include all steps of NP-completeness proof.

VertexCover(G, k) is the problem of deciding whether in graph G there exists a subset of vertices
S of size at most k such that all edges in G have at least one endpoint in the selected vertex set S. A
simple cycle in a graph is a cycle with no repeated vertices (except for the start and end vertex).
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