
CSE Qualifying Exam: High-Performance Computing

Spring 2020

Instructions

• Please answer three of the following four questions. All questions are graded on a scale of 10. If you
answer all four, all answers will be graded and the three lowest scores will be used in computing your
total.

• Please write clearly and concisely, explain your reasoning, and show all work. Points will be awarded
for clarity as well as correctness.

• Unless otherwise specified, assume a distributed memory model of computation where a message
of m words can be sent in O(τ + µm) time, where τ denotes the latency and µ denotes the per word
transfer time. You may assume each processor can send and receive one message within the same
parallel communication step.

Problem 1

Suppose we have p interconnected processors, each with its own memory. Consider n particles where
the position of each particle in 3-D space is known. Space is partitioned into p cells. The positions of the
particles lying in the kth cell are stored only on processor k. If a pair of particles i and j are separated by a
distance d less than a given distance r, we must compute the equal-and-opposite force on particle i and on
particle j. This force depends on d and is used to update the position of particles i and j.

(a) Assuming a uniform random distribution of particles in a bounded 3-D domain, derive an asymptotic
lower bound on the interprocess communication volume required to update the positions of all n particles.

(b) Give an algorithm that attains this lower bound.

Problem 2

The Hilbert space filling curve is a way to convert coordinates (x, y) into an index h such that two points
with consecutive indices are always near each other in the plane.

We can write a Hilbert index as an integer in base 4, h = h1h2 · · ·hn, where each hi ∈ {0, 1, 2, 3}.

Decoding a Hilbert index can be done recursively: we start with x0 = y0 = 0, and we have four different
update rules:

• if hi = 0, xi ← yi−1/2, yi ← xi−1/2;

• if hi = 1, xi ← (1 + xi−1)/2, yi ← yi−1/2;

• if hi = 2, xi ← (1 + xi−1)/2, yi ← (1 + yi−1)/2;

• if hi = 3, xi ← (1− yi−1)/2, yi ← (2− xi−1)/2.

1



Write a parallel algorithm for decoding a Hilbert index. Your algorithm should run in O(log n) time.

Problem 3

Parallel HTML rendering. When a web browser downloads a web page, it receives it in HTML format. Let’s
assume a simplified form of HTML: the downloaded document is represented as a tree of page elements, as
shown in Figure 1a. Each vertex is a page element; and page elements may be nested. If v is an element, let P [v]
be its parent and let C[v] be the set of its children. For instance, in Figure 1a, C[a] = {b, c, g, h, i} and P [d] = b.

a

b

d

c

e f

g h i

j k

m

l

(a) Raw HTML, viewed as a tree of “page elements”

j k

l

ihg

b c
d

e f

a

m

(b) Illustration of a rendered HTML page

Figure 1: Parallel HTML rendering problem

Given such a tree, the browser needs to render it, meaning to lay it out physically on the output device,
such as a screen or printed page. Figure 1b shows a hypothetical rendering. When fully rendered, every
element v has known width and height and a known absolute position on the output device. Let’s use Sv as
a shorthand for this “state” of v. The problem is that the input tree (Figure 1a) initially holds only the nesting
relationships and the content of each element; it does not have any size or position information, other than
the nesting structure. In this scenario, we say Sv = ∅, to denote the initially unknown state.

However, suppose you have two special operations that can help resolve Sv .

• Sv = place(Sa, Sb): Let a and b be any pair of direct siblings, that is P [a] = P [b] = v, with known
dimensions in Sa and Sb. Then this function will decide how to place these together (e.g., next to
each other, on top of each other, or some other arrangement) and returns a new combined state,
Sv, that captures this arrangement and their relative positions. You can think of the combined state
as a kind of “virtual child” of v, so that one may compose placements as place(place(S, T ), U) =
place(place(S,U), T ).

• S′′′v = merge(S′v, S′′v ): Given two partial renderings of v, as might be produced by place(·, ·), this
operation reconciles them into a single rendering. That is, S′v might represent a partial rendering
with some of the children of v while S′′v does so for a different set of v’s children. This operation
will combine them. Similar to the above, you may further assume that merge(S′,merge(S′′, S′′′)) =
merge(merge(S′, S′′), S′′′).

Lastly, assume that for any leaf w (i.e., C[w] = ∅), the size is easy to compute by a call to place(∅, w)
= place(w, ∅). You may also assume that the above operations cost O(1) time each. If you need more
assumptions, state them clearly.

Please answer the following questions.

2



a. (70%) Give an efficient parallel algorithm to render the page, that is, to fully resolve Sv for all v.
“Efficient” in this case means with a total work that is as asymptotically close as you can manage to
O(n) and a span or depth that is polylogarithmic in n. Analyze your algorithm.

b. (30%) Critique the assumptions of this problem. That is, which ones pose the “biggest threat” to the
efficiency or correctness of your approach, and why?

Problem 4

Scheduling.

a. Scheduling for a Single Processor: Consider n jobs {j1, j2, . . . , jn} that will arrive for execution on a single
processor, one after each other. Let their arrival times be {a1, a2, . . . , an}, respectively, with ai ≤ ai+1.
Also let {t1, t2, . . . , tn} be the respective execution times on that processor. If the processor is free
when job ji arrives, job starts without any wait and executes for ti unit and it exits. Otherwise, job
waits in the queue for its turn for execution (in the order it was received). Assume ai’s and ti’s are
distributed evenly across p processors. Design and efficient parallel algorithm to determine the waiting
time incurred by each job. (60%)

b. Scheduling for Multiple Processors: Now consider, we have m identical processors that jobs can be
executed. Discuss the changes you would do to your algorithm; how they effect the execution time of
your algorithm. (40%)

3


