CSE Qualifying Exam: High-Performance Computing

Spring 2020

Instructions

* Please answer three of the following four questions. All questions are graded on a scale of 10. If you
answer all four, all answers will be graded and the three lowest scores will be used in computing your
total.

® Please write clearly and concisely, explain your reasoning, and show all work. Points will be awarded
for clarity as well as correctness.

¢ Unless otherwise specified, assume a distributed memory model of computation where a message
of m words can be sent in O(7 + pm) time, where 7 denotes the latency and 1 denotes the per word
transfer time. You may assume each processor can send and receive one message within the same
parallel communication step.

Problem 1

Suppose we have p interconnected processors, each with its own memory. Consider n particles where
the position of each particle in 3-D space is known. Space is partitioned into p cells. The positions of the
particles lying in the kth cell are stored only on processor k. If a pair of particles ¢ and j are separated by a
distance d less than a given distance r, we must compute the equal-and-opposite force on particle i and on
particle j. This force depends on d and is used to update the position of particles ¢ and j.

(a) Assuming a uniform random distribution of particles in a bounded 3-D domain, derive an asymptotic
lower bound on the interprocess communication volume required to update the positions of all n particles.

(b) Give an algorithm that attains this lower bound.

Problem 2

The Hilbert space filling curve is a way to convert coordinates (x,y) into an index i such that two points
with consecutive indices are always near each other in the plane.
We can write a Hilbert index as an integer in base 4, h = hyhs - - - h,,, where each h; € {0, 1,2, 3}.

Decoding a Hilbert index can be done recursively: we start with 2y = yo = 0, and we have four different
update rules:

e ifh; =0,2; < yi—1/2,yi < Ti—1/2;

o ifh;, =12, (1+xi—1)/2, v < yi-1/2;

o ifh; =22, (1+xi—1)/2, i — 1+ yi-1)/2;
o ifh; =3, x; « (L —yi—1)/2,y: + (2—2;-1)/2.



Write a parallel algorithm for decoding a Hilbert index. Your algorithm should run in O(logn) time.

Problem 3

Parallel HTML rendering. When a web browser downloads a web page, it receives it in HTML format. Let’s
assume a simplified form of HTML: the downloaded document is represented as a tree of page elements, as
shown in Figure 1a. Each vertex is a page element; and page elements may be nested. If v is an element, let P[v]
be its parent and let C'[v] be the set of its children. For instance, in Figure 1a, C[a] = {b,¢, g, h,i} and P[d] = b.

//'\\ d "

| /\ / 1\

| [

(b) Mustration of a rendered HTML page

(a) Raw HTML, viewed as a tree of “page elements”

Figure 1: Parallel HTML rendering problem

Given such a tree, the browser needs to render it, meaning to lay it out physically on the output device,
such as a screen or printed page. Figure 1b shows a hypothetical rendering. When fully rendered, every
element v has known width and height and a known absolute position on the output device. Let’s use S, as
a shorthand for this “state” of v. The problem is that the input tree (Figure 1a) initially holds only the nesting
relationships and the content of each element; it does not have any size or position information, other than
the nesting structure. In this scenario, we say S, = (), to denote the initially unknown state.

However, suppose you have two special operations that can help resolve .S,

e S, = place(S,, Sp): Let a and b be any pair of direct siblings, that is Pla] = P[b] = v, with known
dimensions in S, and S;. Then this function will decide how to place these together (e.g., next to
each other, on top of each other, or some other arrangement) and returns a new combined state,
Sy, that captures this arrangement and their relative positions. You can think of the combined state
as a kind of “virtual child” of v, so that one may compose placements as place(place(S,T"),U) =
place(place(S,U),T).

7, SY): Given two partial renderings of v, as might be produced by place(-, -), this
operation reconciles them into a single rendering. That is, S, might represent a partial rendering
with some of the children of v while S! does so for a different set of v’s children. This operation
will combine them. Similar to the above, you may further assume that merge(S’, merge(S”,5")) =
merge(merge(S’,S"),S").

e S = merge(S,

Lastly, assume that for any leaf w (i.e., Clw] = 0), the size is easy to compute by a call to place((), w)
= place(w, (). You may also assume that the above operations cost O(1) time each. If you need more
assumptions, state them clearly.

Please answer the following questions.



a. (70%) Give an efficient parallel algorithm to render the page, that is, to fully resolve S, for all v.
“Efficient” in this case means with a total work that is as asymptotically close as you can manage to
O(n) and a span or depth that is polylogarithmic in n. Analyze your algorithm.

b. (30%) Critique the assumptions of this problem. That is, which ones pose the “biggest threat” to the
efficiency or correctness of your approach, and why?

Problem 4

Scheduling.

a. Scheduling for a Single Processor: Consider n jobs {j1, j2, ..., jn} that will arrive for execution on a single
processor, one after each other. Let their arrival times be {a1, as, ..., a,}, respectively, with a; < a;4;.
Also let {t1,ta,...,t,} be the respective execution times on that processor. If the processor is free
when job j; arrives, job starts without any wait and executes for ¢; unit and it exits. Otherwise, job
waits in the queue for its turn for execution (in the order it was received). Assume a;’s and ¢;’s are
distributed evenly across p processors. Design and efficient parallel algorithm to determine the waiting
time incurred by each job. (60%)

b. Scheduling for Multiple Processors: Now consider, we have m identical processors that jobs can be
executed. Discuss the changes you would do to your algorithm; how they effect the execution time of
your algorithm. (40%)



