CSE Qualifying Exam, Fall 2020: Numerical Analysis

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, or internet usage allowed at any time during the exam (except for purposes of electronic proctoring, e.g., Honorlock).
- Answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for correctness as well as clarity.
- Good luck!

Question 1: Consider a linear system of equations

$$
A x=b,
$$

where

$$
A=\left[\begin{array}{lll}
2 & 0 & \alpha \\
0 & 2 & 0 \\
\alpha & 0 & 2
\end{array}\right]
$$

(a) Find all values of α such that A is symmetric positive definite.
(b) What is the iteration matrix if Gauss-Seidel iteration is applied to solve this linear system?
(c) Find all values of α such as the Gauss-Seidel iteration is convergent.

You must justify your answers.
Question 2: Consider $A \in \mathbb{R}^{n \times n}$.

- Give the algorithm to use inverse iteration with shift μ to compute an eigenvalue of A.
- Apply the algorithm to the following matrix A with $\mu=4.5$,

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

What is the eigenvalue that the algorithm computes? Justify your answer.

Question 3:

(a) Prove or disprove: the product of two symmetric matrices is symmetric.
(b) Given two matrices, A and B, that are symmetric and positive definite, and given that

$$
c_{1} u^{T} B u \leq u^{T} A u \leq c_{2} u^{T} B u
$$

for positive constants c_{1} and c_{2} and all vectors $u \neq 0$, prove that the condition number of $B^{-1} A$ is not greater than c_{2} / c_{1}.
Hint: You may use the fact that the smallest and largest eigenvalues of a symmetric matrix M satisfies

$$
\lambda_{\min }=\min _{x \neq 0} \frac{x^{T} M x}{x^{T} x} \quad \text { and } \quad \lambda_{\max }=\max _{x \neq 0} \frac{x^{T} M x}{x^{T} x}
$$

respectively.

Question 4: Given a symmetric positive definite matrix with a 2×2 block partitioning,

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

show how to construct a triangular matrix R such that

$$
R^{T} A R=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & I
\end{array}\right]
$$

