CSE Ph.D. Qualifying Exam, Fall 2020
 Algorithms

Instructions:

Please answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.

Questions:

1. Greedy

At the start of the semester you are given n homework assignments $\left\{a_{1}, \ldots, a_{n}\right\}$. You can do the assignments in any order, but you must turn in 1 assignment per week over the n weeks of the semester. Assignment a_{i} has a difficulty d_{i} (assume the difficulty values are distinct). If you turn in a_{i} on week j, you get $d_{i}(n-j)$ points.
Please give a greedy algorithm which finds the order of the assignments that maximizes your points, and use the exchange argument to prove the optimality of your algorithm.

2. Dynamic programming

You are given a sorted set of points $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ on a line. Given a constant k, show how to select a subset of $k-1$ of these points, say (still in sorted order) $\left(P_{j_{1}}, \ldots, P_{j_{(k-1)}}\right)$, so as to partition the segment from P_{1} to P_{n} into k pieces that are as close to equal in length as possible. Specifically, writing $L=\left(P_{n}-P_{1}\right) / k$, we want to minimize the square error

$$
\left(P_{j_{1}}-P_{1}-L\right)^{2}+\sum_{i=1}^{k-2}\left(P_{j_{i+1}}-P_{j_{i}}-L\right)^{2}+\left(P_{n}-P_{j_{k-1}}-L\right)^{2}
$$

Please design an algorithm that solves this problem optimally and runs in time polynomial in k and n. Please describe the algorithm clearly (you may give the pseudocode), give the recurrence relations, and analyze the time and space complexity of your algorithm.

3. Dynamic Programming

Suppose you are taking n courses, each with a project that has to be done. Each project will be graded on the following scale: It will be assigned an integer number on a scale of 1 to $g>1$, higher numbers being better grades. Your goal is to maximize your average grade on the n projects.
You have a total of $H>n$ hours in which to work on the n projects cumulatively, and you want to decide how to divide up this time. For simplicity, assume H is a positive integer, and you will spend an integer number of hours on each project.
To figure out how to best divide up your time, you have come up with a set of functions $\left\{f_{i}: i=\right.$ $1,2, \ldots, n\}$ to estimate the grade you will get for each project given that you spend h hours on that project. That is, if you spend $h \leq H$ hours on the project for course i, you will get a grade of $f_{i}(h)$. You may assume that the functions f_{i} are non decreasing: if $h<h^{\prime}$, then $f_{i}(h) \leq f_{i}\left(h^{\prime}\right)$.

So the problem is: Given these functions $\left\{f_{i}\right\}$, decide how many hours to spend on each project (in integer values only) so that your total grade, as computed according to the f_{i}, is as large as possible. The running time of your algorithm should be polynomial in n and H. Please describe the algorithm clearly (you may give the pseudocode), give the recurrence relations, and analyze the time and space complexity of your algorithm.

4. NP-completeness

2-Partition-n-Even Problem:

Input: $2 n$ positive integers $a_{1}, \ldots, a_{2 n}$.
Question: Is there a subset I of $\{1, \ldots, 2 n\}$ such that $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$? We let $S=\sum_{1 \leq i \leq 2 n} a_{i}$.
Prove that 2-Partition-N-Even is NP-complete by using the fact the 2-Partition is NP-complete. 2-Partition is the following problem: Given n positive integers a_{1}, \ldots, a_{n}, is there a subset I of $\{1, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$? Remember to include all the steps of the NP-completeness proof.

