
CSE Qualifying Exam, Fall 2023: Numerical Analysis

Instructions:

� This is a CLOSED BOOK exam. No books or notes are allowed.

� No calculators, computers, phones, or internet usage allowed at any time during the exam
(except for purposes of electronic proctoring, e.g., Honorlock).

� Answer three of the following four questions. All questions are graded on a scale of 10. If
you answer all four, all answers will be graded and the three lowest scores will be used in
computing your total.

� Show all your work and write in a readable way. Points will be awarded for correctness as
well as clarity.

� Good luck!
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1. Consider a sequence ofm×m symmetric matrices, {A1, A2, · · · , }. Let A be another symmetric
matrix with distinct eigenvalues λ1, · · · , λm, with, |λ1| > |λ2| > ... > |λm| and corresponding
(orthogonal) eigenvectors q1, · · · , qm.

(a) Let V (0) be an m×m matrix with linearly independent columns V
(0)
1 , · · · , V (0)

m . Define
V (k) = AkV

(k−1) for k = 1, 2, · · · ,. First consider the case when Ak := A, a constant

matrix, for all k. Does the span of V
(k)
1 , · · · , V (k)

n converge with k, for each n ≤ m? If
yes, give the rate of convergence in terms of the eigenvalues of A. (2 points)

(b) What is the numerical difficulty in carrying out the above iteration to obtain q1, · · · , qm?
Explain how this is resolved by normalizing V (k) above with a QR factorization at each
k. Discuss how q1, · · · , qm are then obtained. (2 points)

(c) Discuss how to obtain the eigenvalues of A from the above QR algorithm. How fast do
the eigenvalues converge with iteration number k? (2 points)

(d) Given a symmetric A, construct a sequence {Ak} that is not constant and yields a faster
rate of convergence for all eigenvalues and eigenvectors than (b) and (c). Show the rate
of convergence. (2 points)

(e) Prove the backward stability of the algorithm in (d), stating any additional assumptions
needed. (2 points)

2. For 1 ≤ p ≤ ∞, define the condition number of a matrix A ∈ Rm×n with respect to the
p-norm as

condp(A) :=
max‖x‖p=1 ‖A‖p
min‖x‖p=1 ‖A‖p

. (1)

Here, the p norm is defined as

‖x‖p =

{
(
∑

i |xi|p)
1/p , for p <∞,

maxi |xi|, else.
(2)

(a) [2.5pts] Show that for A ∈ Rm×n,

cond2

(
ATA

)
= cond2(A)2. (3)

Hint: Remember to treat the case where the condition number is infinite.

(b) [2.5pts] How would you use QR or Cholesky factorization to solve a system Ax = b for
general but nonsingular A ∈ Rm×m. Explain both approaches and reason why one of
these approaches should generally be preferred over the other.

(c) [2.5pts] Consider the diagonal matrix D ∈ Rm×m of the form

D =

D11

. . .

Dmm

 , ∀1 ≤ i ≤ m,Dii > 0. (4)

Compute cond∞(D) and cond1(D).

(d) [2.5pts] By means of an example, show that the result in (a) is not true when replacing
cond2 by a general condp.
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3. Remember that for a symmetric and positive-definite matrix A ∈ Rm×m, its Cholesky factor
L = chol(A) is the unique lower triangular matrix with positive diagonal that satisfies A =
LLT . Define the Cholesky iteration as A0 = A, Lk+1 = chol (Ak) and Ak+1 = LT

kLk. In the
following, assume that all eigenvalues of A are distinct.

(a) [3.0] Show that for all k ≥ 0, Ak has the same eigenvalues as Ak+1. Hint: Try to show
that Ak = B−1k A0Bk for Bk = L1 · · ·Lk.

(b) [3.0] Show that that for bk the leading column of Bk, bk+1 is a positive scalar multiple
of Abk.

(c) [3.0] Use (b) to show that bk+1 converges to the eigenvector of the largest eigenvalue of
A.

(d) [1.0] Provide a similar algorithm that is applicable to nonsymmetric problems.

4. The following two subquestions are unrelated.

(a) [5pts] Let A be a symmetric positive definite matrix. Consider the conjugate gradient
method for solving the system of equations Ax = b. Suppose the initial approximation
x0 is such that the initial residual r0 = b−Ax0 is parallel to an eigenvector q of A with
eigenvalue µ, i.e., r0 = γq where γ is a real number. Prove that the conjugate gradient
method converges in one iteration.

(b) [5pts] Let A be a nonsymmetric and nonsingular matrix with real eigenvalues. If the
Arnoldi algorithm is run on A with starting vector v for k steps, prove or disprove that
the resulting k × k upper Hessenberg matrix only has real eigenvalues.
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