
CSE Ph.D. Qualifying Exam, Fall 2023
This is a closed book exam. No books or notes are allowed.

Data Analysis

Please answer three of the following four questions. All questions are graded on a scale of
10. If you answer all four, all answers will be graded and the three lowest scores will be used
in computing your total. Show all your work and write in a readable way.

1. Gaussian Statistics

The density of a multivariate normal random variable with mean µ and covariance
matrix Σ is given by

PN (x|µ,Σ) = (det (2Σ))−1/2 exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
. (1)

(1) [4pts] Consider the case where the random vector is split as x = (x1, x2), with

mean µ = (µ1, µ2) and (strictly positive definite) covariance matrix Σ =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
.

Using the formula for conditional densities, show that the conditional distribution
x2|x1 = z is a multivariate normal with mean µ2 + Σ2,1 (Σ1,1)

−1 z and covariance
matrix Σ2,2−Σ2,1Σ1,1Σ1,2 in the special case where Σ is 2× 2. Hint: complete the

square in the exponential. Use the formula

(
a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
.

(2) [3pts] Assume that data points (xi, yi)1≤i≤N are obtained as independent samples
from a joint normal distribution with unknown mean and covariance. Derive the
maximum likelihood estimates of its mean and covariance. Use part [1] to derive
an estimate of y for a previously unseen x.

(3) [3pts] Consider the conditional model yi = αTxi + β + ϵi for independently dis-
tributed ϵi with mean zero and identity covariance matrix. Derive the maximum
likelihood estimate of α, β and show how to use this model to predict y for a
previously unseen x. Compare the result to (2) and comment.

2. Dimensionality Reduction

(1) [4pts] [PCA] There are many ways to ”project” data X ∈ Rn×d from high di-
mensions to lower dimensions X̂ ∈ Rn×p. n is the number of data points, d is the
dimension of the original data, and p is the dimension of the projected representa-
tions. PCA aims to finds the best linear projection i.e. the one that minimizes the
reconstruction error ||X − X̂||F (the norm here is the Frobenius norm, described
below). It does so by computing the covariance matrix of the data C = 1

n
X⊤X,

and then projecting the data onto the first few eigenvectors of C. But why does
finding the projection of the data onto the largest eigenvectors of the covariance
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matrix minimize the reconstruction error? Please prove this mathematically. For
simplicity, we will consider the case of PCA from d dimensions to 1 dimension. We
will also assume that X is ”centered,” meaning that the mean across all samples
of every data dimension is 0. (Hint, establish the connection between minimizing
the reconstruction error and maximizing projected variance).
** The Frobenius norm, sometimes also called the Euclidean norm (a term un-
fortunately also used for the vector L2-norm), is matrix norm of an m×n matrix
A defined as the square root of the sum of the absolute squares of its elements,

||A||F =
√∑m

i=1

∑n
j=1 |aij|2. **

(2) [3pts] [KernelPCA] Show how to use kernels in PCA, i.e., derive kernelPCA and
its projected low-dimensional representation.

(3) [3pts] [KernelPCA] We want to apply KernelPCA to the 2D raw data in Figure 1,
which is centered. The projected data should also be 2-dimensional. Which kernel
function should be used so that the projected data would be linearly separable?
The kernel function doesn’t need to be precise. You can use {a, b, c, ...} to replace
the unknown coefficients. Please also draw a sketch of the 2D representation with
KernelPCA applied to the data in Figure 1.

Figure 1: 2D raw data.

3. Maximum Likelihood and Maximum A Posteriori Estimations

Consider a biased coin with an unknown probability θ ∈ [0, 1] of landing heads after
a flip. After conducting multiple coin flips, the resulting sequence is denoted as x =
{H, H, T, H, T}, where ‘H’ represents heads and ‘T’ represents tails.

(1) [3pts] Determine the maximum likelihood estimation (MLE) for the parameter θ
based on the observed flips.

(2) [2pts] If we know that the probability θ of the fixed coin must be one of the
following values: θ ∈ {0.2, 0.5, 0.8}, then what is the MLE for θ?
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(3) [3pts] Consider the same restricted set of possible θ values as in (2). Additionally,
you have access to prior probabilities for each value: p(θ = 0.2) = 0.1, p(θ =
0.5) = 0.05, and p(θ = 0.8) = 0.85. Determine the maximum a posteriori (MAP)
estimation for θ.

(4) [2pts] Given an infinite number of flips of the biased coin, discuss the relationship
between the results obtained from MLE and MAP estimations. Provide a concise
explanation.

4. Neural Networks

Figure 2: Feed forward neural network.

Figure 1 shows a feed forward neural network with one hidden layer containing three
neurons h1, h2, h3 with a sigmoid activation function, with three inputs x1, x2, x3 and
two linear output layers y1, y2.

(1) [1pts] How many total parameters are in this model? Suppose we add an ad-
ditional hidden layer with 4 neurons, how many total parameters do we have
now?

(2) [2pts] What is the forward expression to compute y1?

(3) [2pts] Suppose we train the model on the squared loss L = 1/2(y − y′)2. What is
the expression for ∂L

∂w2
ij
?

(4) [3pts] What is the expression for ∂L
∂w1

ij
?

(5) [2pts] Name any three strategies to reduce overfitting for this model.
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