CSE Ph.D. Qualifying Exam, Fall 2022
Algorithms

Instructions:

Please answer three of the following four questions. All questions are graded on a scale of 10. If you
answer all four, all answers will be graded and the three lowest scores will be used in computing your total.

Questions:

1. Greedy Consider the following job scheduling problem:

You have n jobs Ji, Jo, ..., J,, one supercomputer and n identical PCs. Each jobs needs to be first
preprocessed on the supercomputer, and then it needs to be finished on one of the PCs. Job J; needs
p; seconds of time on the supercomputer, followed by f; seconds of time on a PC.

Since there are n PCs, the finishing of the jobs can be performed fully in parallel, where each PC can
process one job. However, the supercomputer can only work on a single job at a time, so you need to
work out an order in which to schedule the jobs to the supercomputer. As soon as a job is done on the
supercomputer, it can be handed off to a PC for finishing, and the supercomputer can start to process
the next job.

The completion time of all jobs is the earliest time at which all jobs will have finished processing on
the PCs. Describe a greedy algorithm which produces a schedule that minimizes the completion time,
and prove the correctness of your algorithm. Your proof of correctness can use an exchange argument.

2. Dynamic Programming: longest subsequence of increasing numbers

You are given a list of distinct numbers a1, as, ..., a,. Please design a dynamic programming algorithm
which finds the longest subsequence of numbers where the numbers are strictly increasing from smaller
indices to larger indices. A subsequence means a subset of numbers from the original list where the
relative positions of numbers should be maintained but the indices need not be consecutive. That is,
in subsequence a;,, @;,, ..., @;,,, we have i1 < ig < ... < ip,.

For example, given a list of numbers {82, 77, 65, 89, 83, 68,88, 71,91}, one optimal solution is {77, 83, 88,91}.

Please describe the algorithm clearly (you may give the pseudocode), give the recurrence relations, and
analyze the time and space complexity of your algorithm. Remember to include steps to output the
optimal subsequence (you do not need to output all the optimal solutions if there are more than one.)

3. Dynamic Programming: meal delivery

As the new semester starts, George is making plan for ordering meal deliveries from a restaurant for
the entire semester. For each week, George has two choices: either skip the week or order meal for the
entire week. Since the restaurant shares the menu of each week, George can give a tasty score to the
menu of each week depending on how much he likes the food. Suppose there are n weeks, the tasty
scores are X1, Xa, ..., Tn, Where each score is an integer, and can be positive, 0, or negative.



Since the restaurant encourages ordering of consecutive weeks, there can be penalties for skipping
weeks:

o If George skips one week, there is no penalty.
o If George skips two or three consecutive weeks, there will be a penalty of 20 points.

e Skipping for four weeks or more than four weeks is not allowed. This can be considered as a
penalty of co points.

The overall happiness score of the semester is the sum of all the tasty scores of the weeks George decides
to order delivery, minus the corresponding penalty for the weeks that are skipped. For example,
if there are 5 weeks, and the tasty scores are {10,—10,—5,15,6}, and the plan for the 5 weeks is
{order, skip, skip, order, order}, the overall happiness score is 10 — 20 + 15 + 6 = 11.

Please design a dynamic programming algorithm to find the weekly plan for George that maximizes
the overall happiness score of the semester. Please describe the algorithm clearly (you may give the
pseudocode), give the recurrence relations, and analyze the time and space complexity of your algo-
rithm. Remember to include steps to output the optimal weekly plan.

. NP-complete : DOUBLE-SAT

Recall that the SATISFIABILITY (SAT) problem is: given a Boolean formula ¢ of n variables
T1,%2, ..., Tn, determine whether there exist at least one assignment of the n variables that evaluate ¢
to be TRUE. SAT is known to be a NP-complete problem.

The DOUBLE-SAT problem is: given a Boolean formula ¢ of n variables xi, s, ..., z,, determine
whether there exist at least two assignments of the n variables that evaluate ¢ to be TRUE. Prove
that DOUBLE-SAT is NP-complete using the fact that SAT is NP-complete.

For this problem, you can assume that ¢ is in the Conjunctive Normal Form (CNF) for both SAT and
DOUBLE-SAT (no points will be taken off if you make this assumption). But it is possible to write
the proof without this assumption.

Please remember to include all steps of the NP-completeness proof.



